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Universal functions in finite-size scaling: a numerical study in 
the Ising and Potts q = 3  universality class 

Jean-Marc Debierre and Loi'c Turban 
Laboratoire de Physique du Solidet, Universitt de Nancy I ,  BP 239, F-54506 Vandoeuvre- 
I&-Nancy, France 

Received 29 July 1986, in final form 3 October 1986 

Abstract. The universality of the correlation length, order parameter and susceptibility 
amplitudes is studied in the vicinity of the critical point of two-dimensional models on 
strips with periodic boundary conditions for the king and Potts q = 3 universality class. 
The results confirm the Privman-Fisher conjecture. 

1. Introduction 

According to a recent conjecture (Privman and  Fisher 1984), the free energy levels J ;  
on a cylinder-shaped system with size V = Ld-' x CO near the critical point t = 0, h = 0 
(r  = ( T - T,)/ T,, h = H / k B T )  and below the upper critical dimension may be written 
as 

Act, h , L ) = f m ( t ,  h ) + L - d Y J ( x l , X 2 )  
(1.1) 

X I  = c,Lylr x2 = c2 Lyhh 
wheref,, the analytic background, is the same for all the levels. Y , ( x l ,  x z )  is a universal 
function, y ,  and yh are the thermal and  magnetic exponents and c1, c2 are non-universal 
metric factors in the scaled variables x ,  and x 2 .  

On an  Ld-' x 00 cylinder built u p  of Ld-' x 1 slices, the free energy levels are given 
by 

1 
J ( t , h , L ) = I L d ' l n A , ( t ,  h , L )  (1.2) 

where the A, are the eigenvalues of the transfer matrix Ao> A I  3 A 2 .  . . . The first free 
energy level ( j  = 0) gives the free energy density. At the critical point infinitely many 
of the eigenvalues A , ( L )  approach Ao(L) when L+OO so that the corresponding 
correlation lengths: 

(1.3) !$Il,(t, h, L )  = 0 0 0 / ~ , ) 1 - 1  

511, = L[  YO(Xl, X J  - Y , ( x , ,  x2) l - '  

diverge. 
Using equations (1.1)-(1.3) one gets 

= LS,(XI, x2) 
with S , ( x , ,  x 2 )  a universal function of the scaled variables. 

(1.4) 
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The universal amplitude of the correlation length at the critical point S,(O, 0) which 
is related to the decay exponent vj of the corresponding correlation function (Pichard 
and Sarma 1981, Luck 1982) has been extensively studied in two-dimensional models 
(Derrida and de Seze 1982, Nightingale and Blote 1983) and one-dimensional quantum 
chains (Penson and Kolb 1984). The relation between S, and vj has been deduced 
from the conformal invariance at the critical point (Cardy 1984). The free energy 
amplitude at the critical point Yo(O, 0) has been studied numerically in the Ising and 
Potts q = 3 universality class (Turban and Debierre 1986a) and an analytic expression 
for the Potts universality class has been conjectured (Turban and Debierre 1986b) and 
derived from conformal invariance (Blote et al 1986, Affleck 1986). 

In the present paper the universality of the scaling functions on strips with periodic 
boundary conditions is tested numerically near the critical point of two-dimensional 
systems belonging to the Ising and Potts q = 3 universality class. The numerical methods 
are presented in 3 2 and the results are given and discussed in P 3. 

2. Numerical methods 

Let us consider two systems cy and p belonging to the same universality class. Then 
the scaled variables 

X I  = ClaL:ta = c,pL2tp 

x2= c2,L2h, = C2@L2hp 

remain unknown due to the presence of the unknown prefactors c1 and c 2 .  This difficulty 
may be overcome by choosing a as a reference system for this universality class and 
using the new scaled variables: 

(2.4) 

The ratio c l p / c l a  and c Z p / c Z a  may be obtained as follows. 
Taking derivatives of the spin-spin correlation length 

point, one gets 
= LS(x l  , x 2 )  at the critical 

and making use of the universality of (aS/ax,) ,  one gets the ratio 

and, in the same way, 

(2.5) 

(2.6) 

In the Ising universality class atl l /ah vanishes and the ratio cZp/cZu may be deduced 
in the same way from the behaviour of a2tI1/ah2. 
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Using the new variables and  (Y as a reference, one gets the universal function 

S(XI 5 X2)  = S ( X I ,  XZ) = S,,p/Lp 

f & Y t p ,  h,, Lp)  = L i d  Y d X I ,  X2) = Lpdyo(X ,  9 XZ). 

(2.8) 

for the correlation length. The singular part of the free energy density is 

(2.9) 

Since the analytic background f=( t , ,  h,) cannot contribute to the singular behaviour 
of field derivatives, one may obtain a universal expression for the order parameter: 

and the susceptibility 

(2.10) 

(2.1 1) a2fop 
2 

- - ($) L;-2?h - 
ah; ' 

The universality of s(  X I ,  X , ) ,  m (  X I ,  X 2 )  and X (  X I ,  X , )  has been studied numeri- 
cally in the ZD k ing  universality class, with y ,  = 1 and yh = y ,  on the following systems: 

(i) S = Ising model on the square lattice, 
(ii) S = 1 Ising model on the square lattice, 
(iii) hard square lattice gas. 
The reference system is then the spin-: Ising model. 
In the ZD Potts q = 3 universality class, with y, = $ and yh = 8, we have studied the 

three-state Potts model on the square lattice, which is taken as a reference, and the 
hard hexagon lattice gas. 

The transfer matrix (figure 1) is always taken in the diagonal direction on the square 
lattice in order to achieve a better convergence with strip width. 

The critical points of the different models are given in table 1. We have used the 
known exact results for the S = i  Ising model (Kramers and  Wannier 1941), the 

I a )  ( b l  

Figure 1. Transfer matrix for ( a )  the square lattice and ( b )  the triangular lattice for strip 
width N = 3 .  
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Table 1. Models and lattices considered in this paper and their critical couplings. 

Model Ising S = f Ising S = 1 Hard squares Potts q = 3 Hard hexagons 

Lattice Square Square Square Square Triangular 
K c ,  2, $ In( 1 + J2) 0.590 48 3.7962 In(] + J 3 )  f( 11 + 5d5) 

Table 2. Extrapolated values of the ratio c lS /c l ,  and c 2 8 / c 2 a  deduced from data on strips 
of increasing width in the Ising universality class. The Ising S = f model on the square 
lattice is the reference. 

Model Ising S = 4 Ising S = 1 Hard squares 

c l g / c l u  1 0.912 62 0.125 07 
c 2 a l c 2 ,  1 0.902 80 0.445 95 

three-state Potts model (Wu 1982) and the hard hexagon lattice gas (Baxter 1980). 
The approximate values for the S = 1 Ising model and the hard square lattice gas were 
taken from Adler and Enting (1984) and Baxter et a1 (1980). 

The unit length used to measure 1 and L is such that the surface per site is the 
surface unit. In the calculations we use the more convenient definition t = K - K ,  
( K  = J / k B T )  for the temperature variable and the field h is chosen in such a way that 
the order parameter is equal to one (zero) when the system is completely ordered 
(disordered). For the hard square lattice gas the variables t and h are chosen as 

z ,  = z2 = z ,  exp( t )  

z ,  = z ,  exp( h )  z2 = z ,  exp( - h )  

( h  =0) 

( t = 0 )  
(2.12) 

X1 

Figure 2. The universal correlation length function s ( X , )  for different strip widths: ( a )  
the king S = f  model, ( b )  the hard squares model and ( c )  the king S =  1 model. For ( a ) ,  
( b ) + , N = 4 ; M ,  N = 6 ; 0 , N = 8 .  F o r ( c ) + , N = 3 ; M , N = 4 ; 0 , N = 5 .  
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s -0 .4  t P 

Figure 3. s ( X , )  for the wider strips in the Ising universality class: (+) Ising S = $  ( N  = 8), 
(H) hard squares ( N  = 8), (0) Ising s = 1 ( N  = 5 ) .  The curve for the I D  Ising model is 
given in the insert for comparison. 

1.41 

4 1 ,  , , , , , I , , ;  ;; ;././;, , 
+ 

0.4 
-0.1 1 

X2 

Figure 4. As in figure 3 for s ( X , ) .  

and for the hard hexagon lattice gas 

z1 = z2 = 23 = z ,  exp( t )  

z,=z,exp(h) z2 = z3 = zc exp(-h/2) 

where zi is the fugacity on the ith sublattice and z, is the critical fugacity. 

3. Numerical results and discussion 

Table 2 gives the ratio c l P / c l a  and c 2 p / c 2 a  extrapolated for the Ising universality class 
from results on strips with increasing width and table 3 gives the Potts q = 3 results. 

The correlation length results s ( X , )  are presented in figure 2 for the three models 
in the Ising universality class for different lattice widths. The results obtained for the 
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Figure 6. s ( X , )  in the Potts q = 3 universality class. 

three models on the wider strips are reproduced in figure 3. The correlation length of 
the I D  Ising model is given in the insert. 

Figure 4 gives s ( X , )  on the wider strips in the Ising universality class. s ( X , )  and 
s ( X 2 )  for the Potts q = 3 universality class are shown in figures 5 and 6. 

Similar curves for the order parameter m(X,) are given in figure 7 for the Ising 
universality class and in figure 8 for the Potts q = 3 universality class (m(X, , 0) vanishes 
on a strip). 

The susceptibility results are presented in figures 9-12. 
Although we limited ourselves to small widths, especially for the S = 1 Ising and 

the three-state Potts models, the Privman-Fisher conjecture is confirmed by our numeri- 
cal results. These results were tested for the Ising S = f model on the square lattice 
for which the exact values of A. and A,  are known at any temperature(0nsager 1944). 
Using these values we computed the function s ( X , )  for strips of width up to 10000 
and verified that it is exactly superimposable on the curve of figure 3. 
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-0.1 1. 
XZ 

Figure 7. m ( X , )  in the Ising universality class. 
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-0 .1  1.1 
XZ 

Figure 8. m ( x J  in the Potts q = 3 universality class. 
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Figure 9. , y ( X , )  in the Ising universality class. 
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Figure 10. , y ( X , )  in the Ising universality class. 

Table 3. As in table 2 for the Potts 9 = 3 universality class. The reference is the three-state 
Potts model on the square lattice. 

Model Potts 9 = 3 Hard hexagons 

6 1  
t 1 

+ J’ + O n  1 ,  , , , , , , p,; , , , , , 
to 

+ o + o + O  

0 
-1.25 0 1.2 

X ,  

Figure 11. x ( X , )  in the Potts 9 = 3 universality class. 

Finally we observe that the universal functions behave like their one-dimensional 
counterparts, a result which is not unexpected, since in a single step change of the 
length scale by a factor b = L, a strip of width L is transformed into a linear chain. 

Nore added. In a recent work Burkhardt and Guim (1986) have deduced the exact form of the universal 
scaling functions of the spin-spin and energy-energy correlation lengths of the spin-4 Ising model for 
different types of boundary conditions from the correspondence between the two-dimensional Ising model 
and the one-dimensional quantum lsing model in a transverse field. 
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